Protein kinase Cdelta is a key downstream mediator of manganese-induced apoptosis in dopaminergic neuronal cells.
نویسندگان
چکیده
Manganese (Mn) exposure causes manganism, a neurological disorder similar to Parkinson's disease. However, the cellular mechanism by which Mn induces dopaminergic neuronal cell death remains unclear. In the present study, we sought to investigate the key downstream apoptotic cell signaling events that contribute to Mn-induced cell death in mesencephalic dopaminergic neuronal (N27) cells. Mn exposure induced a dose-dependent increase in neuronal cell death in N27 cells. The cell death was accompanied by sequential activation of mitochondrial-dependent proapoptotic events, including cytochrome c release, caspase-3 activation, and DNA fragmentation, but not caspase-8 activation, indicating that the mitochondrial-dependent apoptotic cascade primarily triggers Mn-induced apoptosis. Notably, Mn treatment proteolytically activated protein kinase Cdelta (PKCdelta), a member of a novel class of protein kinase C. The caspase-3 specific inhibitor benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone (Z-DEVD-FMK) significantly blocked PKCdelta cleavage and its kinase activity, indicating that caspase-3 mediates the proteolytic activation. Cotreatment with the PKCdelta inhibitor rottlerin or the caspase-3 inhibitor Z-DEVD-FMK almost completely blocked Mn-induced DNA fragmentation. Additionally, N27 cells expressing a catalytically inactive PKCdelta(K376R) protein (PKCdelta dominant negative mutant) or a caspase cleavage resistant PKCdelta(D327A) protein (PKCdelta cleavage resistant mutant) were found to be resistant to Mn-induced apoptosis. To further establish the proapoptotic role of PKCdelta, RNA interference-mediated gene knockdown was performed. Small interfering RNA suppression of PKCdelta expression protected N27 cells from Mn-induced apoptotic cell death. Collectively, these results suggest that caspase-3-dependent proteolytic activation of PKCdelta plays a key role in Mn-induced apoptotic cell death.
منابع مشابه
Caspase-3-dependent proteolytic cleavage of protein kinase Cdelta is essential for oxidative stress-mediated dopaminergic cell death after exposure to methylcyclopentadienyl manganese tricarbonyl.
In the present study, we characterized oxidative stress-dependent cellular events in dopaminergic cells after exposure to an organic form of manganese compound, methylcyclopentadienyl manganese tricarbonyl (MMT). In pheochromocytoma cells, MMT exposure resulted in rapid increase in generation of reactive oxygen species (ROS) within 5--15 min, followed by release of mitochondrial cytochrome C in...
متن کامل6-hydroxydopamine-induced apoptosis is mediated via extracellular auto-oxidation and caspase 3-dependent activation of protein kinase Cdelta.
6-Hydroxydopamine is a neurotoxin commonly used to lesion dopaminergic pathways and generate experimental models for Parkinson disease, however, the cellular mechanism of 6-hydroxydopamine-induced neurodegeneration is not well defined. In this study we have explored how 6-hydroxydopamine neurotoxicity is initiated. We have also investigated downstream signaling pathways activated in response to...
متن کاملPKCdelta alternatively spliced isoforms modulate cellular apoptosis in retinoic acid-induced differentiation of human NT2 cells and mouse embryonic stem cells.
NT2 cells are a human teratocarcinoma cell line that, upon treatment with retinoic acid (RA), begin differentiating into a neuronal phenotype. The transformation of undifferentiated NT2 cells into hNT neurons presents an opportunity to investigate the mechanisms involved in neurogenesis because a key component is cell apoptosis, which is essential for building neural networks. Protein kinase Cd...
متن کاملModulation of H2O2- Induced Neurite Outgrowth Impairment and Apoptosis in PC12 Cells by a 1,2,4-Triazine Derivative
Introduction: Increased oxidative stress is widely accepted to be a factor in the development and progression of Alzheimer’s disease. Triazine derivatives possess a wide range of pharmacological activities including anti-oxidative and anti-in.ammatory actions. In this study, we aimed to investigate the possible protective effect of 3-thioethyl-5,6-dimethoxyphenyl-1,2,4-triazine (TEDMT) on H2O2-...
متن کاملGlycogen synthase kinase-3β may contribute to neuroprotective effects of Sargassum oligocystum against amyloid-beta in neuronal SH-SY5Y cells
Glycogen synthase kinase (GSK)-3β mediates amyloid-beta (Aβ) and oxidative stress-induced neurotoxicity in neurodegenerative disorders. Natural products with antioxidant activity, such as Sargassum (S.) oligocystum may modulate GSK-3β enzyme and protect against Aβ-induced neurotoxicity. Therefore, we aimed to assess the neuroprotective effects of a methanolic extract of S. oligocystum against A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 313 1 شماره
صفحات -
تاریخ انتشار 2005